f07 — Linear Equations (LAPACK) f07mhc

NAG C Library Function Document
nag_dsyrfs (f07mhc)

1 Purpose

nag_dsyrfs (f07mhc) returns error bounds for the solution of a real symmetric indefinite system of linear
equations with multiple right-hand sides, AX = B. It improves the solution by iterative refinement, in
order to reduce the backward error as much as possible.

2 Specification

void nag_dsyrfs (Nag_OrderType order, Nag_UploType uplo, Integer n, Integer nrhs,
const double a[], Integer pda, const double af[], Integer pdaf,
const Integer ipiv[], const double b[], Integer pdb, double x[], Integer pdx,
double ferr[], double berr[], NagError *fail)

3 Description

nag_dsyrfs (f07mhc) returns the backward errors and estimated bounds on the forward errors for the
solution of a real symmetric indefinite system of linear equations with multiple right-hand sides AX = B.
The function handles each right-hand side vector (stored as a column of the matrix B) independently, so
we describe the function of nag dsyrfs (f07mhc) in terms of a single right-hand side b and solution .

Given a computed solution x, the function computes the component-wise backward error B. This is the
size of the smallest relative perturbation in each element of A and b such that x is the exact solution of a
perturbed system

(A+6A)xr=0b+ b
|6a;j| < Bla;;| and [6b;| < B[by].
Then the function estimates a bound for the component-wise forward error in the computed solution,
defined by:

max |z; — Z;|/ max |z;|
K 1

where Z is the true solution.

For details of the method, see the f07 Chapter Introduction.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

S Parameters
1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.
2: uplo — Nag_UploType Input

On entry: indicates whether the upper or lower triangular part of A is stored and how A is to be
factorized, as follows:

[NP3645/7] f07mhe.1

f07mhc NAG C Library Manual

if uplo = Nag _Upper, the upper triangular part of A is stored and A is factorized as
PUDUT P”, where U is upper triangular;

if uplo = Nag_Lower, the lower triangular part of A is stored and A is factorized as
PLDLTPT, where L is lower triangular.

Constraint: uplo = Nag_Upper or Nag_Lower.

3: n — Integer Input
On entry: n, the order of the matrix A.

Constraint: n > 0.

4: nrhs — Integer Input
On entry: r, the number of right-hand sides.

Constraint: nrhs > 0.

5: a[dim] — const double Input
Note: the dimension, dim, of the array a must be at least max(1, pda x n).

If order = Nag_ColMajor, the (7, j)th element of the matrix A is stored in a[(j — 1) x pda + i — 1] and
if order = Nag_RowMajor, the (i,7)th element of the matrix A is stored in a[(i — 1) x pda + j — 1].

On entry: the n by n original symmetric matrix A as supplied to nag_dsytrf (f07mdc).

6: pda — Integer Input

On entry: the stride separating row or column elements (depending on the value of order) of the
matrix A in the array a.

Constraint: pda > max(1,n).

7: af[dim| — const double Input
Note: the dimension, dim, of the array af must be at least max(1, pdaf x n).

On entry: details of the factorization of A, as returned by nag_dsytrf (f07mdc).

8: pdaf — Integer Input

On entry: the stride separating row or column elements (depending on the value of order) of the
matrix in the array af.

Constraint. pdaf > max(1,n).

9: ipiv[dim| — const Integer Input
Note: the dimension, dim, of the array ipiv must be at least max(1,n).
On entry: details of the interchanges and the block structure of D, as returned by nag dsytrf
(f07mdc).

10: b[dim] — const double Input

Note: the dimension, dim, of the array b must be at least max(l,pdb x nrhs) when
order = Nag_ColMajor and at least max(1, pdb x n) when order = Nag_RowMajor.

If order = Nag_ColMajor, the (i, j)th element of the matrix B is stored in b[(j — 1) x pdb + ¢ — 1] and
if order = Nag_RowMajor, the (4, j)th element of the matrix B is stored in b[(i — 1) x pdb + 5 — 1].

On entry: the n by r right-hand side matrix B.

07mhc.2 [NP3645/7]

f07 — Linear Equations (LAPACK) f07mhc

11:

pdb — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array b.

Constraints:

if order = Nag_ColMajor, pdb > max(1,n);
if order = Nag RowMajor, pdb > max(1, nrhs).

12: x[dim] — double Input/Output
Note: the dimension, dim, of the array x must be at least max(l,pdx x nrhs) when
order = Nag_ColMajor and at least max(1,pdx x n) when order = Nag_RowMajor.

If order = Nag_ColMajor, the (i, j)th element of the matrix X is stored in x[(j — 1) x pdx + ¢ — 1] and
if order = Nag_RowMajor, the (4, j)th element of the matrix X is stored in x[(¢ — 1) x pdx + 7 — 1].
On entry: the n by r solution matrix X, as returned by nag_dsytrs (f07mec).

On exit: the improved solution matrix X.

13: pdx — Integer Input
On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array x.

Constraints:
if order = Nag_ColMajor, pdx > max(1,n);
if order = Nag_RowMajor, pdx > max(1, nrhs).

14: ferr[dim] — double Output
Note: the dimension, dim, of the array ferr must be at least max(1, nrhs).

On exit: ferr[j — 1] contains an estimated error bound for the jth solution vector, that is, the jth
column of X, for j=1,2,...

15: berr[dim]| — double Output
Note: the dimension, dim, of the array berr must be at least max(1, nrhs).

On exit: berr[j — 1] contains the component-wise backward error bound [for the jth solution
vector, that is, the jth column of X, for j =1,2,...,7.

16: fail — NagError * Output
The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, n = (value).
Constraint: n > 0.

On entry, nrhs = (value).
Constraint: nrhs > 0.

On entry, pda = (value).
Constraint: pda > 0.

On entry, pdaf = (value).
Constraint: pdaf > 0.

On entry, pdb = (value).
Constraint: pdb > 0.

[NP3645/7] f07mhe.3

f07mhc NAG C Library Manual

On entry, pdx = (value).
Constraint: pdx > 0.
NE_INT 2

On entry, pda = (value), n = {value).
Constraint: pda > max(1,n).

On entry, pdaf = (value), n = (value).
Constraint: pdaf > max(1,n).

On entry, pdb = (value), n = (value).
Constraint: pdb > max(1,n).

On entry, pdb = (value), nrhs = (value).
Constraint: pdb > max(1, nrhs).

On entry, pdx = (value), n = (value).
Constraint: pdx > max(1,n).

On entry, pdx = (value), nrhs = (value).
Constraint: pdx > max(1, nrhs).
NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The bounds returned in ferr are not rigorous, because they are estimated, not computed exactly; but in
practice they almost always overestimate the actual error.

8 Further Comments

For each right-hand side, computation of the backward error involves a minimum of 4n’ floating-point

operations. Each step of iterative refinement involves an additional 6n”> operations. At most 5 steps of
iterative refinement are performed, but usually only 1 or 2 steps are required.

Estimating the forward error involves solving a number of systems of linear equations of the form Az = b;

the number is usually 4 or 5 and never more than 11. Each solution involves approximately 2n’
operations.

The complex analogues of this function are nag_zherfs (f07mvc) for Hermitian matrices and nag_zsyrfs
(f07nvc) for symmetric matrices.

9 Example

To solve the system of equations AX = B using iterative refinement and to compute the forward and
backward error bounds, where

f07mhe.4 [NP3645/7]

f07 — Linear Equations (LAPACK)

Here A is symmetric indefinite and must first be factorized by

2.07 387 420 -—-1.15
387 —0.21 1.87 0.63
4.20 1.87 1.15 2.06
—1.15 0.63 2.06 —1.81

A:

9.1 Program Text

/* nag_dsyrfs (£07mhc) Example Program.

*

* Copyright 2001 Numerical Algorithms Group.
*

* Mark 7, 2001.

*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagx04.h>

int main(void)

{

#

/* Scalars *x/

Integer berr_len, ferr_len, i, j, n, nrhs;
Integer pda, pdaf, pdb, pdx;

Integer exit_status=0;

Nag_UploType uplo_enum;

NagError fail;

Nag_OrderType order;

/* Arrays */
char uplo[2];
Integer *ipiv=0;

double *a=0, *af=0, *b=0, *berr=0, *ferr=0,

ifdef NAG_COLUMN_MAJOR

#define A(I,J) al[(J-1)*pda + I - 1]
#define AF(I,J) af[(J-1)*pdaf + I - 1]
#define B(I,J) b[(J-1)*pdb + I - 1]
#define X(I,J) x[(J-1)*pdx + I - 1]

#

#define A(I,J)
#define AF(I,J)

#define X(I,J)

order = Nag_ColMajor;

else

I-1)*pda + J - 1]
[(I-1)*pdaf + J - 1]

I-1)*pdx + J - 1]

al(
af
#define B(I,J) b[(I-1)#*pdb + J - 1]
x[(
wM

order = Nag_RowMajor;

#endif

INIT FAIL(fail);

Vprintf ("f07mhc Example Program Results\n\n")

/* Skip heading in data file */
Vscanf ("s*x["\n] ");
Vscanf ("%$1d%1ds*["\n] ", &n, &nrhs);

#ifdef NAG_COLUMN_MAJOR

pda = n;
pdaf = n;
pdb = n;
pdx = n;
#else
pda = n;
pdaf = n;
pdb = nrhs;
pdx = nrhs;
#endif
[NP3645/7]

and B=

*x=0;

2

f07mhc

—-9.50 27.85
—8.38 9.90
—6.07 19.25
—-096 3.93

nag_dsytrf (f07mdc).

f07mhc.5

f07mhc NAG C Library Manual

ferr_len nrhs;
berr_len = nrhs;

/* Allocate memory */

if (!(ipiv = NAG_ALLOC(n, Integer)) ||
a = NAG_ALLOC(n * n, double)) ||
af = NAG_ALLOC(n * n, double)) |
NAG_ALLOC(n * nrhs, double))
r = NAG_ALLOC(berr_len, doubl
r = NAG_ALLOC(ferr_len, doubl
NAG_ALLOC(n * nrhs, double))

® @

r
r

{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read A and B from data file, and copy A to AF and B to X */
Vscanf (" ' %1s ’'%*["\n] ", uplo);
if (*(unsigned char *)uplo == ’'L’)
uplo_enum = Nag_Lower;
else if (#*(unsigned char #*)uplo == 'U’)
uplo_enum = Nag_Upper;
else
{
Vprintf ("Unrecognised character for Nag_UploType type\n");
exit_status = -1;
goto END;
¥

if (uplo_enum == Nag_Upper)
{
for (i = 1; i <= n; ++1)
{
for (j = 1i; j <= n; ++3j)
Vscanf ("s1f", &A(i,J));
}
Vscanf ("sx["\n] ");
}
else
{
for (i = 1; i <= n; ++1i)
{
for (3 = 1; j <= 1i; ++3)
Vscanf ("$1f", &A(i,3));
}
Vscanf ("s*[*\n] ");

}

for (i = 1; i <= n; ++1)
{
for (j = 1; j <= nrhs; ++3j)
Vscanf ("$1f", &B(i,3));
3
Vscanf ("s*[*\n] ");
/* Copy A to AF and B to X */
if (uplo_enum == Nag_Upper)
{
for (1 = 1; 1 <= n; ++1)

f07mhc.6 [NP3645/7]

f07 — Linear Equations (LAPACK) f07mhc

3
for (i = 1; 1 <= n; ++1)
{
for (j = 1; j <= nrhs; ++j)
X(i,j) = B(i,3);
}

/* Factorize A in the array AF */
fO7mdc (order, uplo_enum, n, af, pdaf, ipiv, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO07mdc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Compute solution in the array X */
fO7mec(order, uplo_enum, n, nrhs, af, pdaf, ipiv, x, pdx,

&fail) ;
if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO7mec.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Improve solution, and compute backward errors and */

/* estimated bounds on the forward errors */

fO7mhc (order, uplo_enum, n, nrhs, a, pda, af, pdaf, ipiv,
b, pdb, x, pdx, ferr, berr, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO7mhc.\n%s\n", fail.message);
exit_status = 1;
goto END;
¥

/* Print solution */
x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, nrhs, x, pdx,
"Solution(s)", 0, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from x04cac.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

for (j = j <= nrhs; ++73)

Vprlntf %$11.1less", berr[j-1], j%7==0 2"\n":" ");
Vprintf ("\nEstimated forward error bounds"
"(machine-dependent)\n") ;

1; j <= nrhs; ++3j)
(

Vprintf ("\nBackward errors (machine-dependent)\n")
= 1;
("

for (3 =
Vprintf ("$1ll.le%s", ferr[j-1], j%7==0 || j==nrhs ?"\n":" ");

END

if (ipiv) NAG_FREE(ipiv);

if (a) NAG_FREE (a);

if (af) NAG_FREE (af);

if (b) NAG_FREE (b) ;

if (berr) NAG_FREE (berr);

if (ferr) NAG_FREE(ferr);

if (x) NAG_FREE(x);
return exit_status;

9.2 Program Data

fO07mhc Example Program Data

4 2 :Values of N and NRHS
'L’ :Value of UPLO
2.07

3.87 -0.21
4.20 1.87 1.15

[NP3645/7] f07mhc.7

f07mhc
-1.15 0.
-9.50 27.
-8.38 9.
-6.07 19.
-0.96 3.

63
85
90
25
93

2.06 -1.81 :End of matrix A

:End of matrix B

9.3 Program Results

fO07mhc Example Program Results

Solution(s

)

1
1 -4.0000
2 -1.0000
3 2.0000
4 5.0000

Backward errors

4.1e-17

Estimated forward error bounds(machine-dependent)

2.3e-14

2
1.0000
4.0000
3.0000
2.0000

(machine-dependent)
5.5e-17

3.3e-14

NAG C Library Manual

f07mhe.8 (last)

[NP3645/7]

	f07mhc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	uplo
	n
	nrhs
	a
	pda
	af
	pdaf
	ipiv
	b
	pdb
	x
	pdx
	ferr
	berr
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

